REFERENCE MATERIALS FOR PHYSICS

Notes for Physics Test

Not all formulas necessary are listed, nor are all formulas listed used on this test.
In questions on electricity and magnetism, the term current refers to "conventional current" and the use of the right-hand rule is assumed.

While attention has been paid to significant figures, no answer should be considered incorrect solely because of the number of significant figures.

Physical Constants

Description	Symbol	Value
Acceleration due to gravity on Earth	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=$ $4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Coulomb's constant	k	$8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton rest mass	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Permeability of free space	μ_{0}	$1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
Avogadro constant	N_{A}	$6.02 \times 10^{23} \mathrm{particles} / \mathrm{mol}$
Boltzmann constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Gas constant	R	$8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Unit Definitions

Name	Symbol	Value
1 coulomb	C	6.25×10^{18} elementary charges
1 electronvolt	eV	$1.60 \times 10^{-19} \mathrm{~J}$

Classical Mechanics Formulas

Description	Formula	Symbols
Average velocity	$\mathbf{v}=\frac{\Delta \mathrm{d}}{t}$	$\begin{aligned} & v=\text { average velocity } \\ & d=\text { displacement } \\ & t=\text { time } \end{aligned}$
Average acceleration	$\mathbf{a}=\frac{\Delta \mathrm{v}}{t}$	$a=$ average acceleration
Final velocity	$v_{f}=v_{i}+a t$	$\begin{aligned} & v_{f}=\text { final velocity } \\ & v_{i}=\text { initial velocity } \end{aligned}$
Kinematic equation	$\Delta d=v_{i} t+\frac{1}{2} a t^{2}$	
Kinematic equation	$v_{f}^{2}-v_{i}{ }^{2}=2 a \Delta d$	
x-component	$V_{x}=V(\cos \theta)$	$\begin{aligned} & V=\text { vector } \\ & V_{x}=x \text {-component of } V \end{aligned}$
y-component	$V_{y}=V(\sin \theta)$	$V_{y}=y$-component of V

Description	Formula	Symbols
Newton's second law	$\mathrm{a}=\frac{\mathrm{F}_{\mathrm{net}}}{m}$	$\begin{aligned} & F_{n e t}=\text { net force } \\ & m=\text { mass } \end{aligned}$
Force of friction	$F_{f}=\mu F_{N}$	$\begin{aligned} & F_{f}=\text { force of friction } \\ & \mu=\text { coefficient of friction } \\ & F_{N}=\text { normal force } \end{aligned}$
Newton's law of universal gravitation	$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$	$F_{g}=$ force of gravity $r=$ distance between centers of mass
Weight	$F_{g}=m g$	
Centripetal acceleration	$a_{c}=\frac{v^{2}}{r}$	$\begin{aligned} & a_{c}=\text { centripetal acceleration } \\ & r=\text { radius } \end{aligned}$
Angular velocity	$\omega=\frac{v}{r}$	$\omega=$ angular velocity
Angular acceleration	$\alpha=\frac{a}{r}$	$\alpha=$ angular acceleration
Circular motion	$\Delta \theta=\omega_{i} t+\frac{1}{2} \alpha t^{2}$	$\begin{aligned} & \Delta \theta=\text { angular displacement } \\ & \omega_{i}=\text { initial angular velocity } \end{aligned}$
Circular motion	$\omega_{f}=\omega_{i}+\alpha t$	$\omega_{f}=$ final angular velocity
Moment of inertia	$I=\sum_{i} m_{i} r_{i}^{2}$	$I=$ moment of inertia
Torque	$\tau=I \alpha$	$\tau=$ torque
Torque	$\begin{aligned} & \boldsymbol{\tau}=\mathbf{r} \times \mathbf{F} \\ & \tau=r F_{\perp}=r F(\sin \theta) \end{aligned}$	$F=$ force
Hooke's law	$F=-k x$	$k=$ spring constant
Period of spring	$T=2 \pi \sqrt{\frac{m}{k}}$	$T=$ period
Period of simple pendulum	$T=2 \pi \sqrt{\frac{\ell}{g}}$	$\ell=$ length

Momentum and Energy Formulas

Description	Formula	Symbols
Momentum	$\mathrm{p}=\mathrm{mv}$	$p=$ linear momentum
Conservation of momentum	$p_{f}=p_{i}$	$\begin{aligned} & p_{f}=\text { final momentum } \\ & p_{i}=\text { initial momentum } \end{aligned}$
Impulse		
Elastic potential energy	$U_{e}=\frac{1}{2} k \Delta x^{2}$	$\begin{aligned} & U_{e}=\text { elastic potential energy } \\ & \Delta x=\text { change in length } \end{aligned}$
Gravitational potential energy	$U_{g}=m g \Delta h$	$\begin{aligned} & U_{g}=\text { gravitational potential energy } \\ & h=\text { height } \end{aligned}$
Kinetic energy	$K E=\frac{1}{2} m v^{2}$	$K E=$ kinetic energy
Work	$W=F d(\cos \theta)$	$W=$ work
Work-energy principle	$W=\Delta K E$	
Work-energy principle	$W=-\Delta U$	$U=$ potential energy
Power	$P=\frac{W}{t}$	$P=$ power
Power	$P=\mathbf{F} \cdot \mathrm{v}$	
Angular momentum	$L=I \omega$	$L=$ angular momentum
Angular momentum	$\begin{aligned} & \mathbf{L}=\mathbf{r} \times \mathbf{p} \\ & L=r m v_{\perp}=r_{\perp} m v \end{aligned}$	

Wave Formulas

Description	Formula	Symbols
Wave speed	$v=f \lambda$	$\begin{aligned} & \lambda=\text { wavelength } \\ & f=\text { frequency } \end{aligned}$
Wave period	$T=\frac{1}{f}$	$T=$ period
Law of reflection	$\theta_{i}=\theta_{r}$	$\begin{aligned} & \theta_{i}=\text { angle of incidence } \\ & \theta_{r}=\text { angle of reflection } \end{aligned}$
Index of refraction	$n=\frac{c}{v}$	$n=$ index of refraction $c=$ speed of light in a vacuum
Law of refraction	$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	$\begin{aligned} & \theta_{1}=\text { angle of incidence } \\ & \theta_{2}=\text { angle of refraction } \end{aligned}$
Law of refraction	$\frac{n_{2}}{n_{1}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$	$\begin{aligned} & \lambda_{1}=\text { incident wavelength } \\ & \lambda_{2}=\text { refracted wavelength } \end{aligned}$
Speed of waves on a string	$v=\sqrt{\frac{F_{T}}{m / L}}$	$\begin{aligned} & F_{T}=\text { tension force } \\ & L=\text { string length } \end{aligned}$
Standing wave condition for a string fixed at both ends	$2 L=n \lambda$ where n is an integer	
Standing wave condition for a string fixed at one end	$4 L=n \lambda$ where n is an odd integer	
Standing wave condition for a tube open at both ends	$2 L=n \lambda$ where n is an integer	
Standing wave condition for a tube closed at one end	$4 L=n \lambda$ where n is an odd integer	
Thin lens equation	$\frac{1}{f}=\frac{1}{o}+\frac{1}{i}$	$f=$ focal length $o=$ object distance $i=$ image distance

Thermodynamics Formulas

Description	Formula	Symbols
Heat formula	$Q=m c \Delta T$	$\begin{aligned} & Q=\text { heat } \\ & c=\text { specific heat capacity } \\ & \Delta T=\text { change in temperature } \end{aligned}$
Latent heat	$Q=m L$	$L=$ latent heat of fusion or vaporization
Equipartition	$\left[\frac{1}{2} m v^{2}\right]_{\text {average }}=\frac{3}{2} k_{B} T$	$T=$ thermodynamic temperature
Ideal gas law	$P V=n R T$	$\begin{aligned} & n=\text { number of moles } \\ & P=\text { pressure } \\ & V=\text { volume } \end{aligned}$
Gas constant	$R=N_{A} k_{B}$	
First law of thermodynamics	$\Delta U=Q-W$	$\Delta U=$ change in internal energy W = work done by system

Electricity and Magnetism Formulas

Description	Formula	Symbols
Coulomb's law	$F_{e}=k \frac{q_{1} q_{2}}{r^{2}}$	$q=$ charge $k=$ Coulomb's constant
Electric field strength	$E=\frac{F_{e}}{q}$	$E=$ electric field strength $F_{e}=$ electrostatic force
Potential difference	$I=\frac{q}{t}$	$V=$ potential difference $W=$ electrical work
Current	$V=I R$	$I=$ current $t=$ time
Ohm's law	$P=I V=I^{2} R=\frac{V^{2}}{R}$	$R=$ resistance
Electrical power	$\rho=R \frac{A}{\ell}$	$\rho=$ power
Electrical resistivity	$P=\frac{W}{t}$	$A=$ cross-sectional area $\ell=$ length
Electrical power		

Description	Formula	Symbols
Current in series circuits	$I=I_{1}=I_{2}=I_{3}=\ldots$	
Voltage in series circuits	$V=V_{1}+V_{2}+V_{3}+\ldots$	
Resistance in series circuits	$R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots$	
Current in parallel circuits	$I=I_{1}+I_{2}+I_{3}+\ldots$	
Voltage in parallel circuits	$V=V_{1}=V_{2}=V_{3}=\ldots$	
Resistance in parallel circuits	$R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots}$	
Resonant frequency of an LC circuit	$f_{0}=\frac{\omega_{0}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}$	$\begin{aligned} & \omega_{0}=\text { resonant angular frequency } \\ & f_{0}=\text { resonant equivalent } \\ & \text { frequency } \\ & L=\text { inductance } \\ & C=\text { capacitance } \end{aligned}$
Force on a charged particle in a magnetic field	$\begin{aligned} & \mathbf{F}=q \mathbf{v} \times \mathbf{B} \\ & F=q v B(\sin \theta) \end{aligned}$	$B=$ magnetic field strength
Force on a current-carrying wire	$\begin{aligned} & \mathbf{F}=\mathbf{I} \ell \times \mathbf{B} \\ & F=I \ell B(\sin \theta) \end{aligned}$	$\ell=$ length
Biot-Savart law	$\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int_{c} \frac{I d \ell \times \mathbf{r}^{\prime}}{\left\|\mathbf{r}^{\prime}\right\|^{3}}$	$\begin{aligned} & r^{\prime}=r-\ell=\text { displacement vector } \\ & r=\text { position } \end{aligned}$
Faraday's law of induction	$E M F=-N \frac{\Delta B_{\perp} A}{\Delta t}$	$E M F=$ electromotive force $N=$ number of turns
Ideal transformer equation	$\frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}$	$\begin{aligned} & V_{S}=\text { secondary voltage } \\ & V_{P}=\text { primary voltage } \\ & N_{S}=\text { number of secondary turns } \\ & N_{P}=\text { number of primary turns } \end{aligned}$

Modern Physics Formulas

Description	Formula	Symbols
Photon energy	$E=h f=\frac{h c}{\lambda}$	$E=$ energy $c=$ speed of light in vacuum
Mass-energy equivalence	$E=m c^{2}$	$m=$ mass
De Broglie wavelength	$\lambda=\frac{h}{p}$	$p=$ momentum
Photoelectric effect	$K E_{\max }=h f-\varphi$ $K E_{\max }=e V_{0}$	$K E_{m a x}=$ maximum kinetic energy $\varphi=$ work function $V_{0}=$ stopping potential
Lorentz factor	$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$	$\gamma=$ Lorentz factor
Length contraction	$\Delta x^{\prime}=\frac{\Delta x}{\gamma}$	$\Delta x^{\prime}=$ length in observer's reference frame $\Delta x=$ length in object's reference frame
Time dilation	$\Delta t^{\prime}=\gamma \Delta t$	$\Delta t^{\prime}=$ time in observer's reference frame
$\Delta t=$ time in object's reference frame		

